skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Litchinitser, Natalia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. While spin angular momentum is limited to ±ℏ, orbital angular momentum (OAM) is, in principle, unbounded, enabling tailored optical transition rules in quantum systems. However, the large optical size of vortex beams hinders their coupling to nanoscale platforms such as quantum emitters. To address this challenge, we experimentally demonstrate the subdiffraction focusing of an OAM-carrying beam using a hypergrating, a flat meta-structure based on a multilayered hyperbolic composite. We show that our structure generates and guides high-wave vector modes to a deeply subwavelength spot and experimentally demonstrate the focus of an OAM-carrying beam on a spot size of ∼λ/3. We also show how the proposed platform facilitates the formation of an optical skyrmion with spin textures as small asλ/250, opening new avenues for controlling light–matter interactions. 
    more » « less
    Free, publicly-accessible full text available September 18, 2026
  2. Abstract In the rapidly developing field of nanophotonics, machine learning (ML) methods facilitate the multi‐parameter optimization processes and serve as a valuable technique in tackling inverse design challenges by predicting nanostructure designs that satisfy specific optical property criteria. However, while considerable efforts have been devoted to applying ML for designing the overall spectral response of photonic nanostructures, often without elucidating the underlying physical mechanisms, physics‐based models remain largely unexplored. Here, physics‐empowered forward and inverse ML models to design dielectric meta‐atoms with controlled multipolar responses are introduced. By utilizing the multipole expansion theory, the forward model efficiently predicts the scattering response of meta‐atoms with diverse shapes and the inverse model designs meta‐atoms that possess the desired multipole resonances. Implementing the inverse design model, uniquely shaped meta‐atoms with enhanced higher‐order magnetic resonances and those supporting a super‐scattering regime of light‐matter interactions resulting in nearly five‐fold enhancement of scattering beyond the single‐channel limit are designed. Finally, an ML model to predict the wavelength‐dependent electric field distribution inside and near the meta‐atom is developed. The proposed ML based models will likely facilitate uncovering new regimes of linear and nonlinear light‐matter interaction at the nanoscale as well as a versatile toolkit for nanophotonic design. 
    more » « less
  3. Electric anapoles, arising from the destructive interference of primitive and toroidal electric dipole moments, have recently emerged as a fundamental class of non-scattering sources. On the other hand, super-scattering states represent the opposite regime wherein the scattering cross-section of a subwavelength particle exceeds the single-channel limit, leading to a strong scattering behavior. Here, we demonstrate that the interplay between the topology of light and the subwavelength scatterer can lead to these two opposite responses within an isolated all-dielectric meta-atom. In particular, we present the emergence of a new non-scattering state, referred to as hybrid anapole, which surpasses conventional electric dipole anapoles by achieving a remarkable 23-fold enhancement in the suppression of far-field radiation and almost threefold enhancement in the confinement of electromagnetic energy inside the meta-atom. We also explore the role of particle orientation and its inversion symmetry in the scattering response and predict the possibility of switching between non-scattering and super-scattering states within the same platform. The presented study elucidates the role of light and matter topologies in the scattering response of subwavelength meta-atoms, uncovering two opposite regimes of light-matter interaction and opening new avenues in applications such as nonlinear optics and spectroscopy. 
    more » « less
  4. García-Blanco, Sonia M; Cheben, Pavel (Ed.)
  5. Abstract Transformation optics has formulated a versatile framework to mold the flow of light and tailor its spatial characteristics at will. Despite its huge success in bringing scientific fiction (such as invisibility cloaking) into reality, the coordinate transformation often yields extreme material parameters unfeasible even with metamaterials. Here, we demonstrate a new transformation paradigm based upon the invariance of the eigenspectra of the Hamiltonian of a physical system, enabled by supersymmetry. By creating a gradient-index metamaterial to control the local index variation in a family of isospectral optical potentials, we demonstrate broadband continuous supersymmetric transformation in optics, on a silicon chip, to simultaneously transform the transverse spatial characteristics of multiple optical states for arbitrary steering and switching of light flows. Through a novel synergy of symmetry physics and metamaterials, our work provides an adaptable strategy to conveniently tame the flow of light with full exploitation of its spatial degree of freedom. 
    more » « less
  6. Abstract We demonstrate a simple, femtosecond-scale wavelength tunable, subwavelength-thick nanostructure that performs efficient wavelength conversion from the infrared to the ultraviolet. The output wavelength can be tuned by varying the input power of the infrared pump beam and/or relative delay of the control beam with respect to the pump beam, and does not require any external realignment of the system. The nanostructure is made of chalcogenide glass that possesses strong Kerr nonlinearity and high linear refractive index, leading to strong field enhancement at Mie resonances. Although, as many other materials, chalcogenide glasses absorb in the ultraviolet range, fundamental phase-locking mechanism between the pump and the inhomogeneous portion of the third-harmonic signal enables ultraviolet transmission with little or no absorption. 
    more » « less
  7. Abstract Chalcogenide photonics offers unique solutions for a broad range of applications from mid-infrared sensing to integrated, ultrafast, ultrahigh-bandwidth signal processing. However, to date its usage has been limited to the infrared part of the electromagnetic spectrum, thus avoiding ultraviolet and visible ranges due to absorption of chalcogenide glasses. Here, we experimentally demonstrate and report near-infrared to ultraviolet frequency conversion in an As 2 S 3 -based metasurface, enabled by a phase locking mechanism between the pump and the inhomogeneous portion of the third harmonic signal. Due to the phase locking, the inhomogeneous component co-propagates with the pump pulse and encounters the same effective dispersion as the infrared pump, and thus experiences little or no absorption, consequently opening previously unexploited spectral range for chalcogenide glass science and applications, despite the presence of strong material absorption in this range. 
    more » « less
  8. Abstract On-chip integrated laser sources of structured light carrying fractional orbital angular momentum (FOAM) are highly desirable for the forefront development of optical communication and quantum information–processing technologies. While integrated vortex beam generators have been previously demonstrated in different optical settings, ultrafast control and sweep of FOAM light with low-power control, suitable for high-speed optical communication and computing, remains challenging. Here we demonstrate fast control of the FOAM from a vortex semiconductor microlaser based on fast transient mixing of integer laser vorticities induced by a control pulse. A continuous FOAM sweep between charge 0 and charge +2 is demonstrated in a 100 ps time window, with the ultimate speed limit being established by the carrier recombination time in the gain medium. Our results provide a new route to generating vortex microlasers carrying FOAM that are switchable at GHz frequencies by an ultrafast control pulse. 
    more » « less